

Markscheme

May 2016

Physics

Standard level

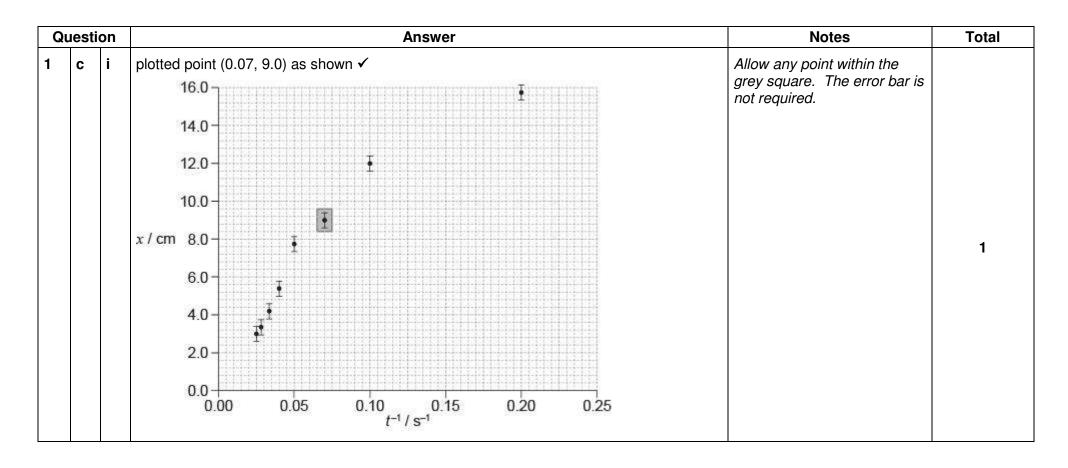
Paper 3

19 pages

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Subject Details: Physics SL Paper 3 Markscheme

Mark Allocation


Candidates are required to answer ALL questions in Section A [15 marks] and all questions from ONE option in Section B [20 marks].

Maximum total = [35 marks].

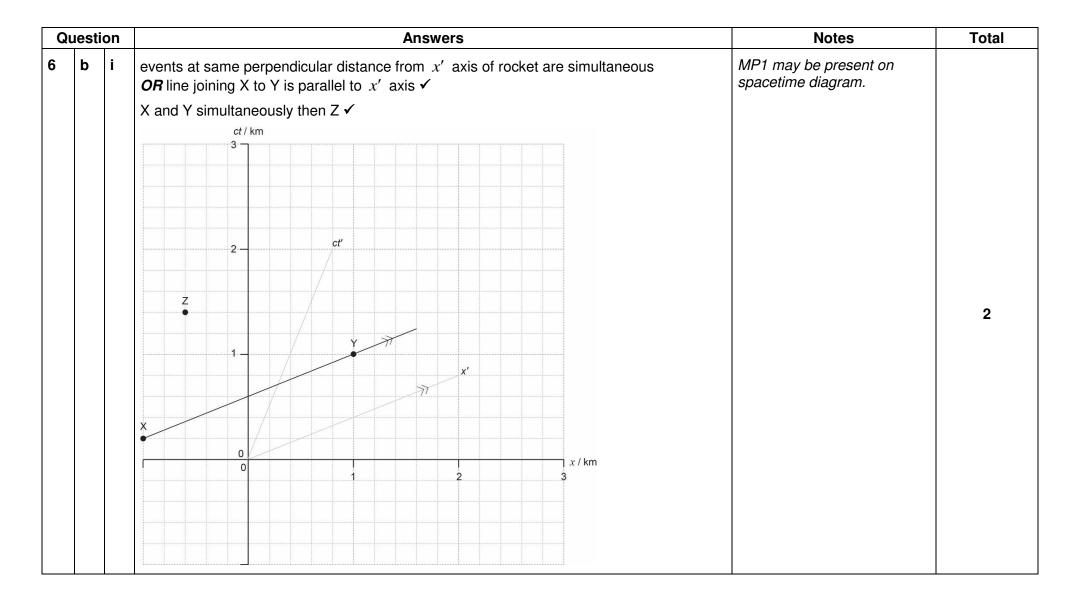
- 1. Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- **3.** Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
- **4.** A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- 5. An alternative wording is indicated in the "Answers" column by a slash (/). Either wording can be accepted.
- **6.** An alternative answer is indicated in the "Answers" column by "**OR**" between the alternatives. Either answer can be accepted.
- 7. Words in angled brackets « » in the "Answers" column are not necessary to gain the mark.
- **8.** Words that are underlined are essential for the mark.
- **9.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.

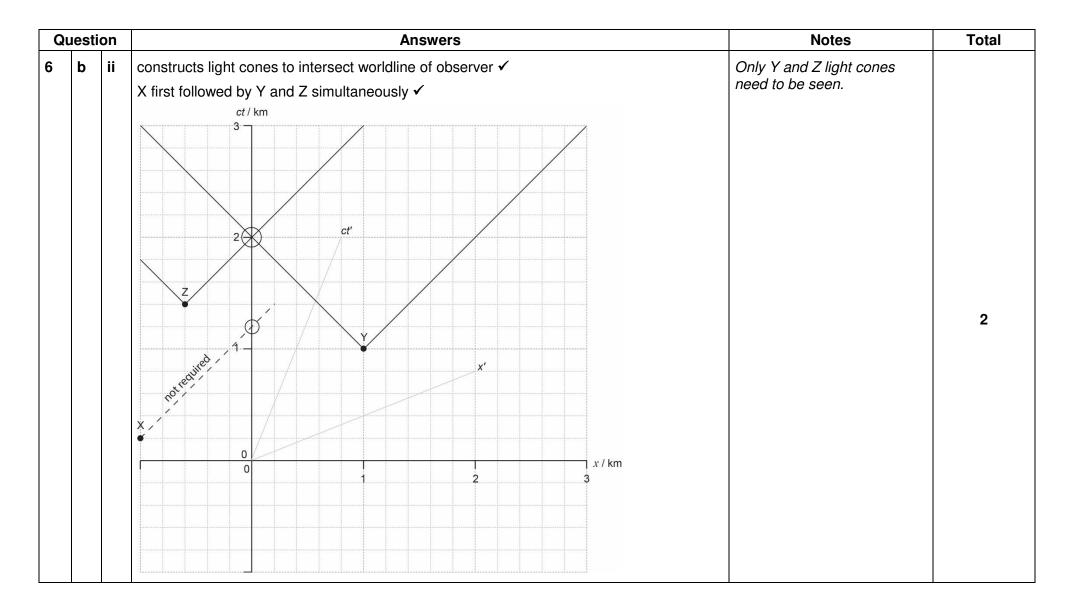
Section A

Question	Answers	Notes	Total	
1 a	smooth curve passing through all error bars \$\square\$ 18.0 16.0- 14.0- 12.0- x/cm 8.0- 6.0- 4.0- 2.0- 0.0 0 5 10 15 20 25 30 35 40 45 t/s		1	
b	$x = 2.5 \text{ cm} \pm 0.2 \text{ cm}$ AND $\Delta x = 0.5 \text{ cm} \pm 0.1 \text{ cm}$ \checkmark $\frac{0.5}{2.5} = 20\%$	Accept correctly calculated value from interval 15 % to 25 %.	2	

	Que	stic	on	Answer	Notes	Total
1		C	ii	ALTERNATIVE 1 t^{-1} from 0.025 s ⁻¹ to 0.04 s ⁻¹ \checkmark giving t from 25 to 40 \checkmark ALTERNATIVE 2 the data do not support the hypothesis \checkmark	Do not allow ECF from MP1 to MP2.	2
				any relevant support for the suggestion, <i>eg</i> straight line cannot be fitted through the error bars and the origin ✓		

Q	uesti	ion	Answers	Notes	Total
2	а	i	refractive index = 1.5 ✓	Both correct value and 2SF required for [1].	1
	а	ii	fractional uncertainty $x_3 - x_1 = \frac{0.04}{1.15} = 0.035$ AND $x_3 - x_2 = \frac{0.04}{0.76} = 0.053$ < sum of fractional uncertainty = 0.088 < "uncertainty = their RI × 0.088" = 0.1 <	Accept correct calculation using maximum and minimum values giving the same answer.	3
	b	i	systematic error ✓	Accept "zero error/offset".	1
	b	ii	calculated refractive index is unchanged ✓ because both numerator and denominator are unchanged ✓	Accept calculation of refractive index with 0.05 subtracted to each x value.	2
	С		numerator and denominator will be 10 times larger so refractive index is unchanged ✓ relative/absolute uncertainty will be smaller ✓	"Constant material" is not enough for MP1.	2


Section B


Option A — Relativity					
Qı	uesti	on	Answers	Notes	Total
3	а		not being accelerated OR		
			not subject to an unbalanced force OR where Newton's laws apply ✓		1
	b	i	c✓		1
	b	ii	<i>C</i> + <i>V</i> ✓		1

4		Y measures electrostatic <u>repulsion</u> only ✓		
		protons are moving relative to X «but not Y» <i>OR</i> protons are stationary relative to Y ✓		
		moving protons create magnetic fields around them according to X ✓	4	
		X also measures an <u>attractive</u> magnetic force <i>OR</i> relativistic/Lorentz effects also present ✓		

Qı	uesti	ion	Answers	Notes	Total
5	а		$\gamma = 4.503 \checkmark$ $ \frac{0.800}{4.50} = 0.178 \text{ m} \checkmark$		2
	b		time = $\frac{0.800}{2.94 \times 10^8}$ \checkmark 2.74 ns \checkmark		2
	С		$\frac{2.74}{4.5} OR \frac{0.178}{2.94 \times 10^8} \checkmark$ 0.608 ns \checkmark		2
	d		it is measured in the frame of reference in which both events occur at the same position <i>OR</i> it is the shortest time interval possible ✓		1

$v = \frac{\Delta x}{\Delta ct} = \frac{0.8}{2.0} = 0.4c \checkmark$ Accept answers from 0.37c to 0.43c.
--

Question	Answers	Notes	Total
7 a	because <i>Mg</i> and <i>N</i> act through the axis OR only <i>F</i> has a non-zero lever arm «about the axis» ✓		1
b i	alternative 1 use of Newton's law for linear motion: $Mgsin\theta - F = Ma$ ✓ use of Newton's law for rotational motion: $FR = I\alpha$ ✓ combining $Mgsin\theta = Ma + \frac{I\alpha}{R}$ ✓ substitution of $I = \frac{1}{2}MR^2$ and $\alpha = \frac{a}{R}$ ✓ to get result Alternative 2 $Mgh = \frac{1}{2}Mv^2 + \frac{1}{4}Mv^2 \cdot \text{from } \frac{1}{2}I\omega^2 = \frac{1}{2}\left(\frac{1}{2}MR^2\right)\frac{v^2}{R^2} \Rightarrow \checkmark$ $v^2 = \frac{4}{3}gh \checkmark$ $v^2 = 2as = 2a\frac{h}{\sin\theta} \checkmark$ manipulation to produce given answer ✓	Accept correct use of torques about point of contact.	4

Qι	ıesti	on	Answers	Notes	Total
7	b		rearranging $s = \frac{1}{2}at^2$ to get $t = \sqrt{\frac{2s}{a}}$ \checkmark substitution to get $t = \sqrt[4]{\frac{2 \times 1.5}{a}}$ $\Rightarrow = 0.96$ s \checkmark		2
	С		this «so speed of ice must always be greater at same point» ✓	Allow answers in terms of energies, eg ice does not use energy to rotate and therefore will have a greater translational speed.	1
	d		the hollow cylinder has a greater moment of inertia ✓ and hence a smaller acceleration ✓		2

Ques	stion	Answers	Notes	Total
8 a	a i	1400 «K» ✓		1
а	a ii	$\frac{3}{2}P\Delta V = \frac{3}{2} \times 4 \times 10^5 \times 3 \times 10^{-3} \checkmark$ $1800 J \checkmark$		2
а	a ii	1800 + $P\Delta V = 1800 + 4 \times 10^5 \times 3 \times 10^{-3}$ OR use of $\Delta Q = \frac{5}{2} P\Delta V$ 4 3000 J 4		2
а	a i	curve starting at A ending on line CB AND between B and zero pressure	, ✓	1
b	o i	0 🗸		1
b	o ii	ALTERNATIVE 1 C has the same volume as B OR entropy is related to disorder \checkmark higher temperature/pressure means greater disorder \checkmark therefore entropy at C is greater «because entropy is related to disorder ALTERNATIVE 2 to change from B to C, $\triangle Q > 0$ \checkmark so $\triangle S > 0$ \checkmark	» √	3

Option C — Ima Question		Answers	Notes	Total
a a		mirror I F C 1 cm one correct ray drawn ✓ another correct ray ✓ image located at intersection of rays, behind the mirror ✓	Label I is required.	3
b		≈ 0.4 ✓		1
С		image is in better focus/sharper <i>OR</i> parabolic do not suffer from spherical aberration ✓ parabolic mirrors reflect parallel rays through one point ✓ whereas spherical mirrors reflect parallel rays through different points ✓	Award 3 rd mark even if implied in the answer.	3

Qu	estic	on	Answers	Notes	Total
10	а		$F_o + f_e = 84 \text{ so } f_e = 84 - 82 = 2 \text{ cm } \checkmark$ $\ll M = \frac{f_o}{f_e} = \frac{82}{2} = 3 \text{ and } \checkmark$		2
	b		a sign convention is a way to distinguish between real and virtual objects <i>or</i> images <i>or</i> converging and diverging lenses ✓		1
	С	i	image will be virtual $v = -25 \text{ cm} \checkmark$ $\frac{1}{u} = \frac{1}{82} + \frac{1}{25} \checkmark$ $= 19 \text{ cm } \text{ or } 0.19 \text{ m} \Rightarrow$	Award [1 max] if $v = +25$ cm used to give $u = -36$ cm.	2
	С	ii	image will be real $v = 84 - 19 = 65 \text{ cm}$ $\frac{1}{u} = \frac{1}{2} - \frac{1}{65}$ so $u = 2.1 \text{ cm}$		2
	С	iii	$M_{\rm e} = \frac{D}{f_{\rm e}} + 1 = \frac{25}{82} + 1 = 1.3$ AND $m_{\rm o} = \frac{V}{f_{\rm o}} - 1 = \frac{65}{2} - 1 = 31$ or 32 v So $M = \frac{M_{\rm e}m_{\rm o}}{f_{\rm e}} = 1.3 \times 31 = 40$ or 41 v	Far point adjustment gives M = 9.3 (accept answers from interval 9.3 to 9.6), award [1 max] for full working.	2

Question		Answers	Notes	Total
11	а	curved, symmetrical path ✓	Refraction on entry not required and ignored in diagram for simplicity.	
				1
	b	waveguide dispersion means that rays not parallel to the central axis take longer to transmit ✓		
		in a graded-index fibre rays away from the central axis travel at a higher speed <i>OR</i> rays are «refracted» closer to the central axis <i>OR</i> effective diameter of the fibre is reduced ✓		3
		because refractive index is greater in the centre <i>OR</i> refractive index is less at the edge ✓		

Opti	Option D — Astrophysics					
Question		on	Answers	Notes	Total	
12	а		made of dust and/or gas ✓ formed from supernova ✓ can form new stars ✓ some radiate light from enclosed stars ✓ some absorb light from distant stars ✓		1 max	
	b		$d = \frac{1}{8.32 \times 10^{-3}} \text{OR} 120 \text{pc} \checkmark$ $120 \times 3.26 \times 9.46 \times 10^{15} = 3.70 \times 10^{18} \text{m} \checkmark$	Answer must be in metres, watch for POT.	2	
	С		distances are so big/large <i>OR</i> to avoid using large powers of 10 <i>OR</i> they are based on convenient definitions ✓		1	

13	а	$T = \frac{2.9 \times 10^{-3}}{740 \times 10^{-9}} \checkmark$ 3900 K \(Answer must be to at least 2SF.	2
	q	$L = 5.67 \times 10^{-8} \times 4\pi \times (3.1 \times 10^{10})^{2} \times 4000^{4} \checkmark$ $= 1.8 \times 10^{29} \text{ W } \checkmark$	Accept use of 3900^4 to give 1.6×10^{29} W .	2
	С	absorption lines in spectra ✓ are specific to particular elements ✓	Accept "emission lines in spectra".	2
	d	helium ✓		1

Qu	Question		Answers	Notes	Total
13	е		helium flash ✓ expansion of outer shell <i>OR</i> surface temperature increase ✓ planetary nebula phase ✓ only the core remains ✓		3 max
			if below 1.4 M _S /Chandrasekhar limit then white dwarf ✓		

14	а	i	$z = \frac{\Delta \lambda}{\lambda_o}$ where $\Delta \lambda$ is the redshift of a wavelength and λ_o is the wavelength measured at rest on Earth <i>OR</i> it is a measure of cosmological redshift \checkmark	Do not allow just "redshift".	1
	а	ii	$\ll z = \frac{R}{R_o} - 1$, $\frac{R_o}{R} = \frac{1}{z+1}$ so $\frac{R_o}{R} = \ll \frac{1}{1.16}$ ≈ 0.86	Do not accept answer 1.16.	1
	а	iii	$v = zc = 0.16 \times 3 \times 10^{8} = 4.8 \times 10^{4} \text{km s}^{-1} \checkmark$ $d = \frac{v}{H_{0}} = \frac{4.8 \times 10^{4}}{68} = 706 \text{Mpc } \mathbf{OR} \ 2.2 \times 10^{25} \text{m} \checkmark$		2
	b		as the universe expanded it cooled/wavelength increased ✓ the temperature dropped to the present approximate 3 K <i>OR</i> wavelength stretched to the present approximate 1 mm ✓	Value is required for MP2.	2